Self-perpetuating epigenetic pili switches in bacteria.
نویسندگان
چکیده
Bacteria have developed an epigenetic phase variation mechanism to control cell surface pili-adhesin complexes between heritable expression (phase ON) and nonexpression (phase OFF) states. In the pyelonephritis-associated pili (pap) system, global regulators [catabolite gene activator protein (CAP), leucine-responsive regulatory protein (Lrp), DNA adenine methylase (Dam)] and local regulators (PapI and PapB) control phase switching. Lrp binds cooperatively to three pap DNA binding sites, sites 1-3, proximal to the papBA pilin promoter in phase OFF cells, whereas Lrp is bound to sites 4-6 distal to papBA in phase ON cells. Two Dam methylation targets, GATC(prox) and GATC(dist), are located in Lrp binding sites 2 and 5, respectively. In phase OFF cells, binding of Lrp at sites 1-3 inhibits methylation of GATC(prox), forming the phase OFF DNA methylation pattern (GATC(dist) methylated, GATC(prox) nonmethylated). Binding of Lrp at sites 1-3 blocks pap pili transcription and reduces the affinity of Lrp for sites 4-6. Together with methylation of GATC(dist), which inhibits Lrp binding at sites 4-6, the phase OFF state is maintained. We hypothesize that transition to the phase ON state requires DNA replication to dissociate Lrp and generate a hemimethyated GATC(dist) site. PapI and methylation of GATC(prox) act together to increase the affinity of Lrp for sites 4-6. Binding of Lrp at the distal sites protects GATC(dist) from methylation, forming the phase ON methylation pattern (GATC(dist) nonmethyated, GATC(prox) methylated). Lrp binding at sites 4-6 together with cAMP-CAP binding 215.5 bp upstream of the papBA transcription start, is required for activation of pilin transcription. The first gene product of the papBA transcript, PapB, helps maintain the switch in the ON state by activating papI transcription, which in turn maintains Lrp binding at sites 4-6.
منابع مشابه
The Ability of Cellulose Polysaccharide and Curli Pili Production in Uropathogenic Escherichia Coli and its Association with Biofilm Formation Intensity
Abstract Background and Objective: the Formation of urinary infection by uropathogenic E.coli needs numerous virulence factors and biofilm formation is among these factors. Bacteria that form biofilms express phenotype traits that appear according to the bacteria type. Cellulose is an important compound on the outside of E.coli causing bacte...
متن کاملEscherichia coli type 1 pili trigger late IL-8 production by neutrophil-like differentiated PLB-985 cells through a Src family kinase- and MAPK-dependent mechanism.
The innate immune response to enteropathogenic bacteria includes chemokine-induced polymorphonuclear neutrophil (PMN) migration across mucosal epithelia leading to bacterial clearance and resolution of infection. Among these bacteria, diffusely adherent Escherichia coli expressing Afa/Dr fimbriae (Afa/Dr DAEC), causing childhood diarrhea, can promote IL-8-dependent PMN transmigration across cul...
متن کاملEpigenetic Modifications of Host Genes Induced by Bacterial Infection
Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...
متن کاملExpression of Recombinant Protein B Subunit Pili from Vibrio Cholera
Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...
متن کاملSwitches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System
In an active, self-ubiquitinated state, the Ring1B ligase monoubiquitinates histone H2A playing a critical role in Polycomb-mediated gene silencing. Following ubiquitination by external ligases, Ring1B is targeted for proteosomal degradation. Using biochemical data and computational modeling, we show that the Ring1B ligase can exhibit abrupt switches, overshoot transitions and self-perpetuating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 Suppl 4 شماره
صفحات -
تاریخ انتشار 2002